Author ORCID Identifier
Document Type
Article
Publication Date
2016
Publication Title
Ecology Letters
Volume
19
Issue
6
First Page
668
Last Page
678
Abstract
The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology. © 2016 John Wiley & Sons Ltd/CNRS.
DOI
10.1111/ele.12605
Recommended Citation
Barrios-O'Neill, D.; Kelly, R.; Dick, J. T.A.; Ricciardi, A.; MacIsaac, Hugh J.; and Emmerson, M. C., "On the context-dependent scaling of consumer feeding rates" (2016). Ecology Letters, 19, 6, 668-678.
https://scholar.uwindsor.ca/biologypub/537