Document Type
Article
Publication Date
2016
Publication Title
Journal of Environmental Management
Volume
172
First Page
18
Last Page
28
Abstract
Reclaiming wetlands following open pit mining for industrial oil sand extraction is challenging due to the physical and chemical conditions of the post-mined landscape. The aim of our study was to examine and compare the influence of oil sands process water (OSPW) and material (fine fluid tails or FFT) on the plant community composition of created wetlands. Compared to created-unamended and natural wetlands, the created wetlands amended with OSPW and/or FFT (created-tailings wetlands) had significantly higher water salinity, conductivity, dissolved oxygen concentration and lower oxidative-reductive potential. Water chemistry parameters of created-unamended did not differ significantly from those of natural wetlands. The sediment of created wetlands had significantly less moisture, total nitrogen, and organic content than the natural wetlands. The application of OSPW/FFT in created wetlands will likely lead to initial vegetation composition atypical of natural regional wetlands. For the objective of reclaiming vegetation composition to the status of natural regional wetlands, unamended wetlands were the best reclamation option, based on the physical and chemical parameters measured. Despite being the favored reclamation option, created-unamended wetlands’ physical and chemical characteristics remain atypical of natural wetlands. Most significantly, the basin morphometry of created wetlands was significantly different from that of naturally-formed wetlands in the region, and this appears to partly explain difference in vegetation composition. We also demonstrate that species richness alone is not a useful measure in wetland monitoring. Instead, plant community composition is a better indicator of wetland conditions.
DOI
10.1016/j.jenvman.2016.02.023
Recommended Citation
Roy, Marie-Claude; Foote, Lee; and Ciborowski, Jan J.H., "Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada" (2016). Journal of Environmental Management, 172, 18-28.
https://scholar.uwindsor.ca/biologypub/659