Document Type

Article

Publication Date

2016

Publication Title

Environmental Science and Technology

Volume

50

Issue

20

First Page

11103

Last Page

11111

Abstract

Accurate predictions on the bioaccumulation of persistent organic pollutants (POPs) are critical for hazard and ecosystem health assessments. Aquatic systems are influenced by multiple stressors including climate change and species invasions and it is important to be able to predict variability in POP concentrations in changing environments. Current steady state bioaccumulation models simplify POP bioaccumulation dynamics, assuming that pollutant uptake and elimination processes become balanced over an organism's lifespan. These models do not consider the complexity of dynamic variables such as temperature and growth rates which are known to have the potential to regulate bioaccumulation in aquatic organisms. We contrast a steady state (SS) bioaccumulation model with a dynamic nonsteady state (NSS) model and a no elimination (NE) model. We demonstrate that both the NSS and the NE models are superior at predicting both average concentrations as well as variation in POPs among individuals. This comparison demonstrates that temporal drivers, such as environmental fluctuations in temperature, growth dynamics, and modified food-web structure strongly determine contaminant concentrations and variability in a changing environment. These results support the recommendation of the future development of more dynamic, nonsteady state bioaccumulation models to predict hazard and risk assessments in the Anthropocene. © 2016 American Chemical Society.

DOI

10.1021/acs.est.6b03169

Available for download on Sunday, January 01, 2119

Included in

Biology Commons

Share

COinS