Document Type

Article

Publication Date

9-30-2003

Publication Title

Journal of Experimental Biology

Volume

1

Issue

207

First Page

155

Keywords

ultrasound detection, bullae, utricle, American shad, Alosa sapidissima

Last Page

163

Abstract

It has recently been shown that a few fish species, including American shad (Alosa sapidissima; Clupeiformes), are able to detect sound up to 180 kHz, an ability not found in most other fishes. Initially, it was proposed that ultrasound detection in shad involves the auditory bullae, swim bladder extensions found in all members of the Clupeiformes. However, while all clupeiformes have bullae, not all can detect ultrasound. Thus, the bullae alone are not sufficient to explain ultrasound detection. In this study, we used a developmental approach to determine when ultrasound detection begins and how the ability to detect ultrasound changes with ontogeny in American shad. We then compared changes in auditory function with morphological development to identify structures that are potentially responsible for ultrasound detection. We found that the auditory bullae and all three auditory end organs are present well before fish show ultrasound detection behaviourally and we suggest that an additional specialization in the utricle (one of the auditory end organs) forms coincident with the onset of ultrasound detection. We further show that this utricular specialization is found in two clupeiform species that can detect ultrasound but not in two clupeiform species not capable of ultrasound detection. Thus, it appears that ultrasound-detecting clupeiformes have undergone structural modification of the utricle that allows detection of ultrasonic stimulation.

Comments

http://dx.doi.org/10.1242/jeb.00735

Included in

Biology Commons

Share

COinS