Author ORCID Identifier
https://orcid.org/0000-0002-1899-5689 : Muhammad Khalid
https://orcid.org/0000-0001-7392-3701: Ataualpa Braga
https://orcid.org/0000-0002-2824-7721 : Asad Syed
https://orcid.org/0000-0002-4780-4968 : John F. Trant
https://orcid.org/0000-0003-4088-8297 : Zahid Shafiq
Document Type
Article
Publication Date
8-30-2022
Publication Title
New Journal of Chemistry
Volume
2022
First Page
18233
Last Page
18243
Abstract
Fluorescent-small molecules offer an excellent source of chemosensors when optimized for detection of anions with sensitivity and selectivity, low-cost and robust synthesis. In the present study we synthesized new quinoline-based chemosensors (4a–e) via the one-pot multi component reaction and confirmed their potential for chemosensory via cyclic voltammetry. 4a–e were tested for ligand–anion interaction against F−, OAc−, Br−, ClO3, I−, HSO4−, CN−, ClO4− and SCN-ions, by using UV-visible, colorimetry and Fluorescence. The NH deprotonation was observed as the mechanism of anion interaction via FTIR and H1NMR spectroscopies. Benesi–Hildebrand plot was drawn to calculate binding constants and limit of detection was also computed which showed agreement in theoretical and experimental results. Lastly, computational studies were conducted to investigate the ligand–anion interaction in three-dimensional setting by performing frontier molecular orbital (FMO), UV-Vis, natural bond orbital (NBO) analysis and global reactivity parameters (GRPs) elucidation. Study showed that chemosensors’ chemical reactivity and charge transfer phenomena is explained by the band gap of orbitals. A relatively stable HOMO/LUMO orbitals with grater values of hardness is examined. Further, NBO study described that the intermolecular charge transfer and hyper-conjugation played a significant role in stabilizing the compounds. The findings demonstrated that (4a–e) quinoline-based chemosensors are viable for advance assessment in optimizing excellent chemosensors for fluoride ions.
DOI
10.1039/D2NJ02666J
ISSN
1144-0546
Recommended Citation
Saleem, Tahira; Khan, Samra; Yaqub, Muhammad; Khalid, Muhammad; Islam, Muhammad; ur Rehman, Muhammad Yousaf; Rashid, Muhammad; Shafiq, Iqra; Braga, Ataualpa A. C.; Syed, Asad; Bahkali, Ali H.; Trant, John F.; and Shafiq, Zahid. (2022). Novel quinoline-derived chemosensors: synthesis, anion recognition, spectroscopic, and computational study†. New Journal of Chemistry, 2022, 18233-18243.
https://scholar.uwindsor.ca/chemistrybiochemistrypub/335