Multiple imputation of missing residuals for fault classification: A wind turbine application

Document Type

Conference Proceeding

Publication Date

3-2-2016

Publication Title

Proceedings - 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA 2015

First Page

677

Keywords

Fault diagnosis, Multiple imputation, Sensor faults, Wind turbine

Last Page

680

Abstract

Handling the missing data is considered as a crucial requirement for the performance of diagnostic systems. In the proposed diagnostic system, the preprocessing module receives sets of residuals generated by a combined set of observers, and feeds the proceeded residuals to a fault classification module. It is necessary for the fault classification module to receive complete feature sets. Multiple missing data imputation techniques have been devised in the preprocessing module to guarantee feeding complete sets of features to the fault classification module. The proposed diagnostic scheme is validated using incomplete batch of residuals for sensor fault diagnosis in a doubly fed induction generator (DFIG) of a wind turbine.

DOI

10.1109/ICMLA.2015.145

ISBN

9781509002870

Share

COinS