A New Fault Diagnosis Approach for Heavy-Duty Gas Turbines
Document Type
Article
Publication Date
10-1-2022
Publication Title
IEEE/ASME Transactions on Mechatronics
Volume
27
Issue
5
First Page
3339
Keywords
Adaptive threshold, fuzzy logic, gas turbine, hybrid fault diagnosis, Laguerre network, uncertainty modeling
Last Page
3349
Abstract
Effective fault detection, estimation, and isolation are essential for the safety and reliability of gas turbines. In this article, a hybrid fault detection and isolation (FDI) approach is presented for condition monitoring of heavy-duty gas turbines. First, nonlinear dynamical models are constructed using an orthonormal basis function and an adaptive neuro-fuzzy inference system through experimental data. Following that, a fuzzy inference system is employed to estimate the fault severity. For this aim, fuzzy rules are extracted from the fault patterns by defining appropriate features. Later, various faults are isolated using an ensemble decision tree classifier. The proposed nonlinear modeling compensates for disturbances and uncertainty in the system and leads to adaptive thresholds for fault detection, which reduces the false alarm rate. Moreover, the proposed FDI method brings high accuracy in fault estimation by properly modeling a bounded uncertainty using the adaptive threshold. Experimental data are applied to validate the gas turbine model. Test results indicate that the proposed hybrid FDI method via adaptive threshold overwhelms the other FDI methods, where the misclassified data are 5.6%.
DOI
10.1109/TMECH.2021.3138834
ISSN
10834435
E-ISSN
1941014X
Recommended Citation
Mousavi, Mehdi; Chaibakhsh, Ali; Jamali, Ali; Kordestani, Mojtaba; and Saif, Mehrdad. (2022). A New Fault Diagnosis Approach for Heavy-Duty Gas Turbines. IEEE/ASME Transactions on Mechatronics, 27 (5), 3339-3349.
https://scholar.uwindsor.ca/electricalengpub/211