New Condition-Based Monitoring and Fusion Approaches With a Bounded Uncertainty for Bearing Lifetime Prediction

Document Type

Article

Publication Date

5-1-2022

Publication Title

IEEE Sensors Journal

Volume

22

Issue

9

First Page

9078

Keywords

bearings, bounded uncertainty, Fusion approaches, lifetime prediction, wind farms

Last Page

9086

Abstract

Condition Monitoring (CM) is an essential element of securing reliable operating conditions of Wind Turbines (WT) in a wind farm. CM helps optimize maintenance by providing Remaining Useful Life (RUL) forecast. However, the expected RUL is not often reliable due to uncertainty associated with the prediction horizon. In this paper, we employ high-level fusion methods to expect the RUL of WT bearings. For this purpose, various features are extracted by vibration signals to capture deterioration paths. Then, a Bayesian algorithm is utilized to determine RUL for each selected feature. Eventually, high-level fusion schemes, including Hurwicz, Choquet integral, Ordered Weighted Averaging operator, are employed to integrate RUL numbers and lessen associated uncertainty in the prediction horizons. Besides, a pessimistic fusion strategy is driven to obtain a bounded uncertainty for the worst RUL prediction. The fusion methods are assessed by ten-year vibration signals of Canadian wind farms. Experimental results confirm accurate results with bounded uncertainty for high-level fusion approaches.

DOI

10.1109/JSEN.2022.3159624

ISSN

1530437X

E-ISSN

15581748

Share

COinS