A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm
Document Type
Article
Publication Date
12-1-2020
Publication Title
IEEE Systems Journal
Volume
14
Issue
4
First Page
5407
Keywords
Degradation model, fault prognosis, remaining useful life
Last Page
5416
Abstract
This article introduces a new hybrid prognosis method to predict a remaining useful lifetime (RUL) of multi-functional spoiler (MFS) systems. The MFS is vital to the healthy operation of aircraft spoiler control systems, and any fault or failure in these systems could compromise the safe operation of the aircraft. The proposed prognosis methodology is a hybrid framework composed of a failure parameter estimation unit and an RUL unit. The failure parameter estimation unit observes the failure parameters using distributed neural networks via available measurements of the MFS system. Simultaneously, the remaining useful life is anticipated by the RUL unit employing the estimated failure parameter with a recursive Bayesian algorithm. Moreover, a relative accuracy (RA) measure is invoked to validate the effectiveness of the proposed method. Simulink model of the MFS system is verified by experimental data of the LJ200 series aircraft under fight condition. Furthermore, simulation test results indicate a high accuracy of the distributed structure compared to a centralized network.
DOI
10.1109/JSYST.2020.2986162
ISSN
19328184
E-ISSN
19379234
Recommended Citation
Kordestani, Mojtaba; Samadi, M. Foad; and Saif, Mehrdad. (2020). A New Hybrid Fault Prognosis Method for MFS Systems Based on Distributed Neural Networks and Recursive Bayesian Algorithm. IEEE Systems Journal, 14 (4), 5407-5416.
https://scholar.uwindsor.ca/electricalengpub/239