Critical Wind Turbine Components Prognostics: A Comprehensive Review
Document Type
Article
Publication Date
12-1-2020
Publication Title
IEEE Transactions on Instrumentation and Measurement
Volume
69
Issue
12
First Page
9306
Keywords
Bearings, blade, gearbox, generator, prognosis, wind turbines (WTs)
Last Page
9328
Abstract
As wind energy is becoming a significant utility source, minimizing the operation and maintenance (OM) expenses has raised a crucial issue to make wind energy competitive to fossil fuels. Wind turbines (WTs) are subject to unexpected failures due to operational and environmental conditions, aging, and so on. An accurate estimation of time to failures assures reliable power production and lower maintenance costs. In recent years, a notable amount of research has been undertaken to propose prognosis techniques that can be employed to forecast the remaining useful life (RUL) of wind farm assets. This article provides a recent literature review on modeling developments for the RUL prediction of critical WT components, including physics-based, artificial intelligence (AI)-based, stochastic-based, and hybrid prognostics. In particular, the pros and cons of the prognosis models are investigated to assist researchers in selecting proper models for certain applications of WT RUL forecast. Our comprehensive review has revealed that hybrid methods are now the leading and most accurate tools for WT failure predictions over individual hybrid components. Strong candidates for future research include the consideration of variable operating environments, component interaction, physics-based prognostics, and the Bayesian application in the development of WT prognosis methods.
DOI
10.1109/TIM.2020.3030165
ISSN
00189456
E-ISSN
15579662
Recommended Citation
Rezamand, Milad; Kordestani, Mojtaba; Carriveau, Rupp; Ting, David S.K.; Orchard, Marcos E.; and Saif, Mehrdad. (2020). Critical Wind Turbine Components Prognostics: A Comprehensive Review. IEEE Transactions on Instrumentation and Measurement, 69 (12), 9306-9328.
https://scholar.uwindsor.ca/electricalengpub/240