Actuator fault diagnosis for a class of nonlinear systems and its application to a laboratory 3D crane
Document Type
Article
Publication Date
7-1-2011
Publication Title
Automatica
Volume
47
Issue
7
First Page
1435
Keywords
Fault detection, Fault diagnosis, Fault isolation, Nonlinear systems
Last Page
1442
Abstract
In this paper, an actuator fault diagnosis scheme is proposed for a class of affine nonlinear systems with both known and unknown inputs. The scheme is based on a novel input/output relation derived from the considered nonlinear systems and the use of the recently developed high-order sliding-mode robust differentiators. The main advantages of the proposed approach are that it does not require a design of nonlinear observer and applies to systems not necessarily detectable. Conditions are provided to characterize the feasibility of fault detection and isolation using the proposed scheme and the maximum number of isolatable actuator faults. The efficacy of the proposed actuator fault diagnosis approach is tested through experiments on a laboratory 3D Crane, and the experimental results show that the proposed actuator fault diagnosis approach is promising and can achieve fault detection and isolation satisfactorily. © 2011 Elsevier Ltd. All rights reserved.
DOI
10.1016/j.automatica.2011.02.012
ISSN
00051098
Recommended Citation
Chen, Weitian and Saif, Mehrdad. (2011). Actuator fault diagnosis for a class of nonlinear systems and its application to a laboratory 3D crane. Automatica, 47 (7), 1435-1442.
https://scholar.uwindsor.ca/electricalengpub/340