Robust fault diagnosis for a satellite system using a neural sliding mode observer

Document Type

Conference Proceeding

Publication Date

12-1-2005

Publication Title

Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05

Volume

2005

First Page

7668

Last Page

7673

Abstract

In this paper a nonlinear observer which synthesizes sliding mode techniques and neural state space models is proposed and is applied for robust fault diagnosis in a class of nonlinear systems. The sliding mode term is utilized to eliminate the effect of system uncertainties, and the switching gain is updated via an iterative learning algorithm. Moreover, the neural state space models are adopted to estimate state faults. Theoretically, the robustness, sensitivity, and stability of this neural sliding mode observer-based fault diagnosis scheme are rigorously investigated. Finally, the proposed robust fault diagnosis scheme is applied to a satellite dynamic system and simulation results illustrate its satisfactory performance. © 2005 IEEE.

DOI

10.1109/CDC.2005.1583400

ISBN

0780395689,9780780395688

Share

COinS