Robust fault diagnosis for a satellite system using a neural sliding mode observer
Document Type
Conference Proceeding
Publication Date
12-1-2005
Publication Title
Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05
Volume
2005
First Page
7668
Last Page
7673
Abstract
In this paper a nonlinear observer which synthesizes sliding mode techniques and neural state space models is proposed and is applied for robust fault diagnosis in a class of nonlinear systems. The sliding mode term is utilized to eliminate the effect of system uncertainties, and the switching gain is updated via an iterative learning algorithm. Moreover, the neural state space models are adopted to estimate state faults. Theoretically, the robustness, sensitivity, and stability of this neural sliding mode observer-based fault diagnosis scheme are rigorously investigated. Finally, the proposed robust fault diagnosis scheme is applied to a satellite dynamic system and simulation results illustrate its satisfactory performance. © 2005 IEEE.
DOI
10.1109/CDC.2005.1583400
ISBN
0780395689,9780780395688
Recommended Citation
Wu, Qing and Saif, Mehrdad. (2005). Robust fault diagnosis for a satellite system using a neural sliding mode observer. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05, 2005, 7668-7673.
https://scholar.uwindsor.ca/electricalengpub/397