Enhancing detection accuracy of cyber attacks through dimensionality reduction
Author ORCID Identifier
0000-0002-9956-4003 : Ehsan Hallaji
0000-0002-4330-3656 : Roozbeh Razavi-Far
Document Type
Conference Proceeding
Publication Date
11-2020
Publication Title
Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference
First Page
1346
Keywords
Intrusion detection, cyber-physical systems, gas pipeline, dimensionality reduction, machine learning, SCADA.
Last Page
1351
Abstract
The importance of cyber-security has led to long-standing endeavors dedicated to the design of intrusion detection systems (IDS). Nevertheless, the performance of these data-driven techniques is highly dependent on data quality. Incorporating dimensionality reduction techniques into a hybrid intrusion detection system, we aim to study the effect of dimensionality reduction on the performance of intrusion detection. By this mean, the efficiency of the intrusion detection systems is increased by processing a smaller feature space. Moreover, the reduced feature space also increases the detection accuracy, as redundant and meaningless features are removed in the new feature space. Furthermore, the intrinsic structure of the data is improved, that is different states of the system become more discriminant after dimensionality reduction. For this mean, various state-of-the-art dimensionality reduction techniques are selected. Then, a simulation is performed on a Supervisory Control and Data Acquisition (SCADA) system, which resembles a gas pipeline control system introduced by Morris et al. (2011). A comparative study is then performed to suggest the best dimensionality reduction algorithm in these experiments. The experiments indicate the general improvement of detection accuracy when dimensionality reduction techniques are combined with the IDS in terms of accuracy and standard deviation.
DOI
10.3850/978-981-14-8593-0_4593-cd
ISBN
978-981148593-0
Recommended Citation
Hallaji, Ehsan; Razavi-Far, Roozbeh; and Saif, Mehrdad. (2020). Enhancing detection accuracy of cyber attacks through dimensionality reduction. Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, 1346-1351.
https://scholar.uwindsor.ca/electricalengpub/62