Intelligent Multiobjective NSBGA-II Control of Power Converters in DC Microgrids
Document Type
Article
Publication Date
11-1-2021
Publication Title
IEEE Transactions on Industrial Electronics
Volume
68
Issue
11
First Page
10806
Keywords
Boost converter, constant power load (CPL), dc microgrid (MG), multiobjective control, nondominating sorting binary genetic algorithm (NSBGA-II)
Last Page
10814
Abstract
In this article, we develop a novel multiobjective controller to regulate the power converters of a class of dc microgrids connected to nonlinear constant power loads and linear resistive loads. The suggested control approach uses the nondominating sorting binary genetic algorithm (NSBGA-II) to directly design the on/off switching signal of the converters without using the pulsewidth modulation technique. The multiobjective controller minimizes the tracking error of the dc bus voltage and at the same time tries to reduce the total number of switching actions. Thereby, the developed controller tracks the desired reference with a reduced converter switching action and power loss by using a proper Pareto solution. Moreover, by employing the NSBGA-II algorithm, it is feasible to involve the switching frequency in the design procedure to enhance the performance. Exploiting the binary genetic algorithm instead of the conventional genetic algorithm (GA) turns a continuous surface searching into a binary one, which not only makes it more compatible with the nature of the power converter control but also decreases the online computational burden. To illustrate the superiority of the proposed approach, real-time OPAL results are provided.
DOI
10.1109/TIE.2020.3029483
ISSN
02780046
E-ISSN
15579948
Recommended Citation
Vafamand, Arezoo; Vafamand, Navid; Zarei, Jafar; Razavi-Far, Roozbeh; and Dragicevic, Tomislav. (2021). Intelligent Multiobjective NSBGA-II Control of Power Converters in DC Microgrids. IEEE Transactions on Industrial Electronics, 68 (11), 10806-10814.
https://scholar.uwindsor.ca/electricalengpub/80