"Application of complex variables in electromagnetofluiddynamic, magnet" by Phu Van. Nguyen

Date of Award

1991

Publication Type

Doctoral Thesis

Degree Name

Ph.D.

Department

Mathematics and Statistics

Keywords

Physics, Fluid and Plasma.

Supervisor

Chandna, O. P.

Rights

info:eu-repo/semantics/openAccess

Abstract

This thesis is devoted to (a) a theoretical investigation of steady plane electromagnetofluiddynamic (EMFD), magnetofluiddynamic (MFD) and ordinary fluid dynamic flows and a numerical study of boundary-layer viscoelastic flows. In the theoretical study, the complex conjugate method is employed to obtain the geometries and solutions for various EMFD, MFD and non-MFD flows. Fluid motions with different assumptions such as isometry, circulation preserving, velocity magnitude being constant on each individual streamline and vorticity being a function of the real part of an analytic function of a complex variable are considered. The flow problems that have been considered in this part are: (1) Isometric orthogonal, constantly-inclined and aligned MFD flows of an electrically conducting incompressible second-grade fluid of finite electrical conductivity and of infinite electrical conductivity, (2) Isometric constantly-inclined EMFD flows of an electrically conducting incompressible second-grade fluid with non-zero charge density, (3) Circulation-preserving constantly-inclined, orthogonal and aligned EMFD flows of an electrically conducting incompressible second-grade fluid with non-zero charge density, (4) Circulation-preserving aligned MFD flows with finite electrical conductivity, (5) Constantly-inclined and aligned magnetogasdynamic and gas dynamic flows with the assumption that the velocity magnitude is constant on each individual streamline, and (6) Jeffery flows for incompressible viscous and second-grade fluids. The numerical study deals with viscoelastic steady plane boundary-layer flows. The model for viscoelastic fluid is taken to be the second-grade fluid. A general theory of viscoelastic boundary-layer theory is developed, and as illustrations, the shooting method and the Box scheme are adopted to obtain solutions for: (1) flow near a stagnation point with suction, (2) flow due to a stretching boundary with suction, (3) flow past a semi-infinite flat plate with zero pressure gradient and with exponential pressure gradient, (4) flow past a wedge, and (5) flow past a symmetrical circular cylinder. Finally, the viscoelastic boundary-layer flow is extended to study a magnetofluiddynamic boundary-layer motion due to the stretching of the wall.Dept. of Mathematics and Statistics. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1991 .N488. Source: Dissertation Abstracts International, Volume: 53-01, Section: B, page: 0350. Supervisor: O. P. Chandna. Thesis (Ph.D.)--University of Windsor (Canada), 1991.

Share

COinS