Date of Award
2008
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Computer Science.
Supervisor
Goodwin, Scott (School of Computer Science)
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
While camera control systems of commercial 3D games have improved greatly in recent years, they are not as fully developed as are other game components such as graphics and physics engines. Bourne and Sattar (2006) have proposed a reactive constraint based third person perspective camera control system. We have extended the capability of their system to handle occlusion while following the main character, and have used camera cuts to find appropriate camera positions for a few difficult situations. We have developed a reactive constraint based third person perspective chase camera control system to follow a character in a 3D environment. The camera follows the character from (near) optimal positions defined by a camera profile. The desired values of the height and distance constraints of the camera profile are changed appropriately whenever the character enters a semi-enclosed or an enclosed area, and the desired value of the orientation constraint of the camera profile is changed incrementally whenever theoptimal camera view is obstructed. Camera cuts are used whenever the main character backs up to a wall or any other obstructions, or comes out of a semi-enclosed or an enclosed area. Two auxiliary cameras to observe the main camera positions from top and side views have been added. The chase camera control system achieved real-time performance while following the main character in a typical 3D environment, and maintained an optimal view based on a user specified/selected camera profile.
Recommended Citation
Ali, Mohammed Liakat, "Applications of CSP solving in computer games (camera control)" (2008). Electronic Theses and Dissertations. 1202.
https://scholar.uwindsor.ca/etd/1202