Date of Award
2012
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Industrial and Manufacturing Systems Engineering
Keywords
Operations research.
Supervisor
ElMaraghy, Hoda (Industrial and Manufacturing Systems Engineering)
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
The flexible job shop scheduling problem (F-JSSP) is mathematically formulated. One novel position-based and three sequence-based mixed integer linear programming models are developed. Since F-JSSPs are strongly NP-hard, MILPs fail to solve large-size instances within a reasonable timeframe. Thus, a meta-heuristic, a hybrid of artificial immune and simulated annealing (AISA), is developed for use with larger instances of the F-JSSP. To prove the efficiency of developed MILPs and AISA, they are compared against state-of-the-art MILPs and meta-heuristics in literature. Comparative evaluations are conducted to test the quality and performance of the developed models and solution technique respectively. To this end, size complexities of the developed MILPs are investigated. The acquired results demonstrate that the proposed MILPs outperform the state-of-the-art MILP models in literature. Likewise, the proposed AISA outperforms all the previously developed meta-heuristics. The developed AISA has successfully been applied to a realistic case study from mould and die industry.
Recommended Citation
Roshanaei, Vahid, "Mathematical Modelling and Optimization of Flexible Job Shops Scheduling Problem" (2012). Electronic Theses and Dissertations. 157.
https://scholar.uwindsor.ca/etd/157