Date of Award
2012
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Materials Science.
Supervisor
Alpas, Ahmet (Mechanical, Automotive, and Materials Engineering)
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Orthogonal cutting of Ti-6Al-4V alloy was studied. Surface roughness, chip thickness and shear band frequency increased with the feed rate and cutting speed. Serrated chips were formed due to shear band. Strain and flow stress distributions in the material ahead of the tool tip were estimated from shear angle measurements and microhardness measurements respectively. The stress-strain data obtained in this way was used in numerical models. Two numerical models were developed by using two-dimensional Lagrangian element formulation and Smoothed-particle hydrodynamics formulations employing the Johnson-Cook constitutive relationship that utilised the experimental data generated from the machined material with the damage criteria. The Lagrangian element formulation predicted the strain and temperature generated in the material ahead of the tool tip as 1.65 and 1222 K respectively, which were in agreement with the experimental strain (1.65) and temperature (1217 K). The predicted results using Lagrangian element formulation correlated well with the experimental findings.
Recommended Citation
Islam, Md Aquidul, "Determination of the Deformation State of a Ti-6Al-4V Alloy Subjected to Orthogonal Cutting Using Experimental and Numerical Methods" (2012). Electronic Theses and Dissertations. 191.
https://scholar.uwindsor.ca/etd/191