Flexible multi-layer virtual machine design for virtual laboratory in distributed systems and grids.
Date of Award
2005
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Computer Science.
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
We propose a flexible Multi-layer Virtual Machine (MVM) design intended to improve efficiencies in distributed and grid computing and to overcome the known current problems that exist within traditional virtual machine architectures and those used in distributed and grid systems. This thesis presents a novel approach to building a virtual laboratory to support e-science by adapting MVMs within the distributed systems and grids, thereby providing enhanced flexibility and reconfigurability by raising the level of abstraction. The MVM consists of three layers. They are OS-level VM, queue VMs, and components VMs. The group of MVMs provides the virtualized resources, virtualized networks, and reconfigurable components layer for virtual laboratories. We demonstrate how our reconfigurable virtual machine can allow software designers and developers to reuse parallel communication patterns. In our framework, the virtual machines can be created "on-demand" and their applications can be distributed at the source-code level, compiled and instantiated in runtime. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .K56. Source: Masters Abstracts International, Volume: 44-03, page: 1405. Thesis (M.Sc.)--University of Windsor (Canada), 2005.
Recommended Citation
Kim, Dohan, "Flexible multi-layer virtual machine design for virtual laboratory in distributed systems and grids." (2005). Electronic Theses and Dissertations. 2119.
https://scholar.uwindsor.ca/etd/2119