Date of Award
1998
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Industrial and Manufacturing Systems Engineering
Keywords
Engineering, Industrial.
Supervisor
Du, R.
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
With the use of synthetic fabric and thread as well as high speed sewing in sewing industry, needle heating due to friction between the needle and fabric becomes a serious problem. The high temperature in the needle can scorch the fabric as well as accelerate thread wear and damage the thread. It also causes wear at the needle eye, and may temper and weaken the needle itself. It is desirable to develop analytical computer simulation models to study the needle heating problem. In this thesis, three models are developed: a sliding model, a lumped model, and a Finite Element (FE) simulation model. In the sliding model and the lumped model, it is assumed that needle can be modeled as a cylinder and the effect of the thread can be ignored. These simplified analytical models focus on the needle-fabric interactions, especially the friction heat partition between needle and fabric. In the FE model, both the detailed needle geometry characteristics and thread effects are considered. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1998 .L5. Source: Masters Abstracts International, Volume: 39-02, page: 0576. Adviser: R. Du. Thesis (M.A.Sc.)--University of Windsor (Canada), 1998.
Recommended Citation
Li, Qingwen., "Study of needle heating in industrial sewing." (1998). Electronic Theses and Dissertations. 3653.
https://scholar.uwindsor.ca/etd/3653