Date of Award

2010

Publication Type

Doctoral Thesis

Degree Name

Ph.D.

Department

Electrical and Computer Engineering

Keywords

Engineering, Biomedical.

Supervisor

Kwan, Hon Keung(Electrical and Computer Engineering)

Rights

info:eu-repo/semantics/openAccess

Abstract

With the emergence of genomic signal processing, numerical representation techniques for DNA alphabet set {A, G, C, T} play a key role in applying digital signal processing and machine learning techniques for processing and analysis of DNA sequences. The choice of the numerical representation of a DNA sequence affects how well the biological properties can be reflected in the numerical domain for the detection and identification of the characteristics of special regions of interest within the DNA sequence. This dissertation presents a comprehensive study of various DNA numerical and graphical representation methods and their applications in processing and analyzing long DNA sequences. Discussions on the relative merits and demerits of the various methods, experimental results and possible future developments have also been included. Another area of the research focus is on promoter prediction in human (Homo Sapiens) DNA sequences with neural network based multi classifier system using DNA numerical representation methods. In spite of the recent development of several computational methods for human promoter prediction, there is a need for performance improvement. In particular, the high false positive rate of the feature-based approaches decreases the prediction reliability and leads to erroneous results in gene annotation.To improve the prediction accuracy and reliability, DigiPromPred a numerical representation based promoter prediction system is proposed to characterize DNA alphabets in different regions of a DNA sequence.The DigiPromPred system is found to be able to predict promoters with a sensitivity of 90.8% while reducing false prediction rate for non-promoter sequences with a specificity of 90.4%. The comparative study with state-of-the-art promoter prediction systems for human chromosome 22 shows that our proposed system maintains a good balance between prediction accuracy and reliability. To reduce the system architecture and computational complexity compared to the existing system, a simple feed forward neural network classifier known as SDigiPromPred is proposed. The SDigiPromPred system is found to be able to predict promoters with a sensitivity of 87%, 87%, 99% while reducing false prediction rate for non-promoter sequences with a specificity of 92%, 94%, 99% for Human, Drosophila, and Arabidopsis sequences respectively with reconfigurable capability compared to existing system.

Share

COinS