Date of Award
2006
Publication Type
Master Thesis
Department
Electrical and Computer Engineering
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
The gating and riser system design plays an important role in the quality and cost of a metal casting. Due to the lack of existing theoretical procedures to follow, the design process is carried out on a trial-and-error basis. The casting design optimization problem is characterized by multiple design variables, conflicting objectives, and a complex search space, making it unsuitable for sensitivity-based optimization. In this study, a formal optimization method using evolutionary techniques was developed to overcome such complexities. A framework for integrating the optimization procedure with numerical simulation for the design evaluation is presented. The comparison between a scalar and vector optimization approach was explored using the weighted-sum and multi-objective Genetic Algorithm methods. The proposed optimization framework was applied to the gating and riser system of a sand casting and the results were compared to a popular Design-of-Experiment (DOE) method. It showed that the multi-objective method gave better results and provided more flexibility in decision making.
Recommended Citation
Kor, Jean Shang Leen, "Evolutionary multi-objective optimization for gating and riser system design of metal castings" (2006). Electronic Theses and Dissertations. 4650.
https://scholar.uwindsor.ca/etd/4650