Date of Award
2014
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Artificial Neural Network, Driver Model, Driving Performance, Exploratory Statistics, Risky Behaviour, Unsupervised Classification
Supervisor
Johrendt, Jennifer
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Driving performance can be directly related to the driver behaviour in terms of the mental workload and risk perception. No generally accepted model or system exists that can model the driving task or driver performance in a comprehensive manner. The purpose of this research is to develop a methodology using a series of modelling techniques to evaluate driving performance under naturalistic driving contexts. Exploratory statistical techniques and artificial neural network have been used as the backbone of the work presented in this thesis to determine and classify driver performance in different categories by identifying underlying natural sub-sets in the driving data set. A safe and experienced driver should possess the knowledge and the experience about his/her driving skills along with an acute awareness of the surrounding driving environment. The methodology proposed in this thesis can be used for various applications including evaluation of driving performance of emergency ambulance drivers.
Recommended Citation
Towfic, Ishika Zonina, "A Method for Classifying Driver Performance" (2014). Electronic Theses and Dissertations. 5164.
https://scholar.uwindsor.ca/etd/5164