Date of Award

2011

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Electrical and Computer Engineering

Keywords

AC Conduction Effects, Distributed Generation, Fault Detection, Induction Machines, Voltage Regulation, Wind Energy

Supervisor

Narayan C Kar

Rights

info:eu-repo/semantics/openAccess

Abstract

Centralized generation is being supplemented or replaced fast by distributed generation, a new way of thinking about electricity generation, transmission and distribution. Understanding the significance and prospects of self-excited induction generators (SEIGs) in autonomous distributed wind power generation (ADWG), this thesis exclusively presents the following : 1) A developed dynamic model of SEIG developed using the conventional two-axis transformation technique, commonly known as Park's transformation. 2) A developed electromagnetic model of the AC conduction effects and the significance of incorporating them into the conventional two-axis model of the SEIG (improved mathematical model). 3) A comprehensive study of commercially available niche copper-rotor induction motor (CRIM) and conventional aluminum-rotor induction motor (ARIM) to be used as induction generators in the above application. 4) An experimental three phase short-circuit fault analysis in SEIGs for ADWG. 5) A novel low-cost embedded system based on Daubechies wavelet transforms and swarm intelligence technique for voltage regulation and fault detction in the above application.

Share

COinS