Optimization of WDM optical networks

Quazi R. Rahman, University of Windsor

Abstract

Optical network, with its enormous data carrying capability, has become the obvious choice for today's high speed communication networks. Wavelength Division Multiplexing (WDM) technology and Traffic Grooming techniques enable us to efficiently exploit the huge bandwidth capacity of optical fibers. Wide area translucent networks use sparse placement of regenerators to overcome the physical impairments and wavelength constraints introduced by all optical (transparent) networks, and achieve a performance level close to fully switched (opaque) networks at a much lesser network cost. In this dissertation we discuss our research on several issues on the optimal design of optical networks, including optimal traffic grooming in WDM optical networks, optimal regenerator placement problem (RRP) in translucent networks, dynamic lightpath allocation and dynamic survivable lightpath allocation in translucent networks and static lightpath allocation in translucent networks. With extensive simulation experiments, we have established the effectiveness and efficiencies of our proposed algorithms.