Date of Award
11-26-2015
Publication Type
Doctoral Thesis
Degree Name
Ph.D.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Airfoil Aerodynamics, Control Fluid Flow, Vertical Axis Wind Turbine, Wind Farm Optimization, Wind Turbine Aerodynamics, Wind Turbine Design
Supervisor
Ting, David
Supervisor
Carriveau, Rupp
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT’s blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays configurations. Under controlled flow conditions in a wind tunnel, the counter-rotating configuration resulted in a slight improvement in the aerodynamic performance of each turbine compared to the isolated installation. Moreover, the counter-rotating pair improved the power generation of a turbine located downstream of the pair substantially.
Recommended Citation
Ahmadi-Baloutaki, Mojtaba, "Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines" (2015). Electronic Theses and Dissertations. 5625.
https://scholar.uwindsor.ca/etd/5625