Date of Award
10-19-2015
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Supervisor
Ting, David
Supervisor
Carriveau, Rupp
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
The offshore industry is currently experiencing challenges in designing flexible risers, cables etc., due to their susceptibility to FIV. Deeper understanding of the physics behind FIV is necessary in developing risers etc. This work presents two sets of experimental studies, collectively focusing on critical parameters that may greatly influence cylinder’s hydrodynamic response. A Tygon tube was towed from rest to steady speed before slowing down to rest again in still water. Axial pre-tension and mass ratio was varied for parametrically studying their effects on the cylinder’s hydrodynamic response, which was characterized mainly by vibration amplitudes and frequencies. The resulting effects of varying profile on flow-vibration amplitudes and frequencies have been quantified and expressed with respect to reduced velocity. A 2D numerical study has also been conducted to study the wake behind a circular cylinder, showing 4 types of vortex shedding modes.
Recommended Citation
Cen, Haoyang, "FLOW-INDUCED VIBRATION OF A FLEXIBLE CIRCULAR CYLINDER" (2015). Electronic Theses and Dissertations. 5631.
https://scholar.uwindsor.ca/etd/5631