Date of Award
2016
Publication Type
Doctoral Thesis
Degree Name
Ph.D.
Department
Chemistry and Biochemistry
Keywords
Allocolchicines, Catalysis, conjugate addition, cyclization, cycloheptynes, Nicholas reaction
Supervisor
Green, James
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
The chemistry of propargyliumdicobalt cations, known as the Nicholas reaction, has witnessed widespread use in organic synthesis mainly owing to the high stabilization of the carbocations, accompanied by their compatibility with numerous nucleophiles. However, there is a considerable shortage of studies regarding the factors affecting the stability and reactivity of the involved cations. In this project, we investigated the chemistry of a novel Nicholas carbocation, namely the benzo-homologue of the dehydrotropylium cation, known as a benzodehydrotropylium-Co2(CO)6 cation. To obtain the desired cation, preparation of the requisite alcohol precursor involved the key ring-closure of the cycloheptyne via an intramolecular Sakurai reaction. Additionally, heterocyclic-based cycloheptadienynol-Co2(CO)6 complexes were also prepared. A Lewis acid mediated ionization of the parent alcohol complex led to the in situ generation of the benzodehydrotropylium-Co2(CO)6 ion, which was trapped with several nucleophiles, where the preferred site of substitution was the site remote to the dicobalt alkyne unit. Computational studies using NICS (1) values estimated the ion's aromaticity to be one third of that of tropylium ion, which is comparable to that of the dehydrotropylium-Co2(CO)6 ion previously studied in our group.
Recommended Citation
Mehdi, Mariam Alaa, "PART I: SYNTHESIS OF A-RING MODIFIED ALLOCOLCHICINOIDS VIA LEWIS ACID CATALYZED CONJUGATE ADDITION REACTIONS; PART II: PREPARATION OF BENZOCYCLOHEPTADIENYNOL-Co2(CO)6 COMPLEXES" (2016). Electronic Theses and Dissertations. 5748.
https://scholar.uwindsor.ca/etd/5748