Date of Award

2016

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Mechanical, Automotive, and Materials Engineering

Supervisor

Henshaw, Paul

Supervisor

Sobiesiak, Andrzej

Rights

info:eu-repo/semantics/openAccess

Abstract

Recently, the automakers have become more and more aware of the environmental and economic impact of their manufacturing processes. The paint shop is the largest energy user in a vehicle manufacturing plant, and one way to reduce costs and energy usage is the optimization of this area. This project aims at providing a tool to model and simulate a paint shop, in order to run and analyze some scenarios and case studies, helping to take strategic decisions. Analytical computations and real data were merged to build a tool that can be used by FCA for their Sterling Heights plant. Convection and conduction heat losses were modeled for the dip processes and the ovens. Thermal balances were used to compute the consumptions of booths, decks and ovens, while pump and fan energy consumptions were modeled for each sub-process. The user acts on a calendar, scheduling a year of production, and the model predicts the energy consumption of the paint shop. Five scenarios were run to test different conditions and the influence of scheduling on the energy consumption. Two different sets of production schedules have been evaluated, the first one fulfilling the production requirement in one shift of 10 hours, at high rate, the second one using two 7-hour-long shifts at medium production rate. It was found that the unit cost was minimized in the warmest months of spring and fall, and system shutdown was a crucial factor to reduce energy consumption. A fifth hypothetical scenario was run, with a 4 month continuous production and an 8 month total shutdown, which reduced the energy consumption to a half of the best realistic scenario. When the plant was run in a two-shifts configuration, the cost to coat a vehicle was found to be $29 with weekend shutdown, and $39 without. In the one-shift configuration, the cost was slightly higher, but the difference was less than 5%. While the fifth scenario showed a consistent reduction of the unit cost, inventory and logistic expenses deriving from the production strategy make this scenario almost impossible to realize. A sensitivity analysis was run on several parameters influencing the energy consumption of the paint shop, and the booths set point temperature was found to be the most significant factor.

Share

COinS