Date of Award
4-14-2017
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Electrical and Computer Engineering
Keywords
Cryptography, Scalar multiplication, Side channel attack
Supervisor
Wu, Hua
Supervisor
Mirhassani, Mitra
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Elliptic curve cryptography (ECC) is probably the most popular public key systems nowadays. The classic algorithm for computation of elliptic curve scalar multiplication is Doubling-and-Add. However, it has been shown vulnerable to simple power analysis, which is a type of side channel attacks (SCAs). Among different types of attacks, SCAs are becoming the most important and practical threat to elliptic curve computation. Although Montgomery power ladder (MPL) has shown to be a good choice for scalar multiplication against simple power analysis, it is still subject to some advanced SCAs such like differential power analysis. In this thesis, a new number representation is firstly proposed, then several scalar multiplication algorithms using this new number system are presented. It has also been shown that the proposed algorithms outperform or comparable to the best of existing similar algorithms in terms of against side channel attacks and computational efficiency. Finally we extend both the new number system and the corresponding scalar multiplication algorithms to high radix cases.
Recommended Citation
Huang, Yue, "Efficient scalar multiplication against side channel attacks using new number representation" (2017). Electronic Theses and Dissertations. 5940.
https://scholar.uwindsor.ca/etd/5940