Date of Award


Publication Type

Master Thesis

Degree Name



Electrical and Computer Engineering

First Advisor

Wu, Hua

Second Advisor

Mirhassani, Mitra


Cryptography, Scalar multiplication, Side channel attack



Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.


Elliptic curve cryptography (ECC) is probably the most popular public key systems nowadays. The classic algorithm for computation of elliptic curve scalar multiplication is Doubling-and-Add. However, it has been shown vulnerable to simple power analysis, which is a type of side channel attacks (SCAs). Among different types of attacks, SCAs are becoming the most important and practical threat to elliptic curve computation. Although Montgomery power ladder (MPL) has shown to be a good choice for scalar multiplication against simple power analysis, it is still subject to some advanced SCAs such like differential power analysis. In this thesis, a new number representation is firstly proposed, then several scalar multiplication algorithms using this new number system are presented. It has also been shown that the proposed algorithms outperform or comparable to the best of existing similar algorithms in terms of against side channel attacks and computational efficiency. Finally we extend both the new number system and the corresponding scalar multiplication algorithms to high radix cases.