Date of Award
2017
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Datacenter; Network; Optical; Replication; WDM
Supervisor
Bandhyopadhyay, Dr. Subir
Supervisor
Jaekel, Dr. Arunita
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Survivability of data in datacenters, when a fault occurs, is turning into an upcoming challenge in planning cloud-based applications. At the point when such a disaster happens, a particular geological range is disrupted, and units of transmission systems (e.g., nodes and fibers) within the disrupted region end up faulty, leading to the loss of one or more demands. To deal with such a circumstance, a resilient communication code is required, so arrangements can be made to accommodate an alternative disaster-free path when a fault upsets the path utilized for data requests before the failure happens. In this work, we have shown a new approach to deal with this issue, on account of the static Route and Wavelength Assignment (RWA) in Wavelength Division Multiplexing (WDM) systems. In our approach, a set of communication demands can be handled only if it is feasible to i) Find the datacenter node ii) a primary lightpath that minimizes the effect of disasters that may disrupt lightpaths and iii) (for every disaster that upsets the primary lightpath), a backup lightpath that handles the disaster. We have presented, implemented and examined an efficient heuristic to solve this issue.
Recommended Citation
Shah, Umesh, "Design of Disaster-Resilient Datacenter WDM Networks" (2017). Electronic Theses and Dissertations. 7396.
https://scholar.uwindsor.ca/etd/7396