Date of Award
5-7-2018
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Congestion Control, DSRC/WAVE, Transmission Power, V2V, VANET, Vehicle Density
Supervisor
Jaekel, Arunita
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
The Intelligent Transport Systems (ITS) employs the Vehicular Ad-hoc Networks (VANET) technology to prevent and reduce accidents on highways. VANET uses wireless communication technology that includes protocols and applications that provides safety and non-safety features for a safe and comfortable driving experience. A major problem with VANET is that the network channel utilized for the transmission of network packets for awareness becomes congested due to vehicles competing to use the channel leading to packet loss, high transmission delay and unfair resource usage. These problems would eventually lead to the periodic exchange of Basic Safety Messages not being delivered on time, thereby making VANET unreliable. Researchers have focused on numerous approaches for controlling congestion on the network channel such as adapting the rate of transmission of packets i.e. the number of packets that can be sent per second or adjusting the transmission power which is the distance a packet can travel. An approach is proposed in this thesis to adapt the transmission power, based on the vehicle density state of the network, with the aim of reducing congestion on the network channel and improving the performance of VANET. Results indicate that this can lead to improved performance in terms of reduced packet loss and inter-packet delay.
Recommended Citation
AKINLADE, OLUWASEYI MOROUNFOLUWA, "Adaptive Transmission Power with Vehicle Density for Congestion Control" (2018). Electronic Theses and Dissertations. 7420.
https://scholar.uwindsor.ca/etd/7420