An Improved Public Unclonable Function Design for Xilinx FPGAs for Hardware Security Applications
Abstract
In the modern era we are moving towards completely connecting many useful electronic devices to each other through internet. There is a great need for secure electronic devices and systems. A lot of money is being invested in protecting the electronic devices and systems from hacking and other forms of malicious attacks. Physical Unclonable Function (PUF) is a low-cost hardware scheme that provides affordable security for electronic devices and systems. This thesis proposes an improved PUF design for Xilinx FPGAs and evaluates and compares its performance and reliability compared to existing PUF designs. Furthermore, the utility of the proposed PUF was demonstrated by using it for hardware Intellectual Property (IP) core licensing and authentication. Hardware Trojan can be used to provide evaluation copy of IP cores for a limited time. After that it disables the functionality of the IP core. A finite state machine (FSM) based hardware trojan was integrated with a binary divider IP core and evaluated for licensing and authentication applications. The proposed PUF was used in the design of hardware trojan. Obfuscation metric measures the effectiveness of hardware trojan. A moderately good obfuscation level was achieved for our hardware trojan.