Date of Award
3-10-2019
Publication Type
Master Thesis
Degree Name
M.C.Sc.
Department
Computer Science
Keywords
distributional word representations, dynamic mutual information, word co-occurrences
Supervisor
Jianguo Lu
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Semantic relations between words are crucial for information retrieval and natural language processing tasks. Distributional representations are based on word co-occurrence, and have been proven successful. Recent neural network approaches such as Word2vec and Glove are all derived from co-occurrence information. In particular, they are based on Shifted Positive Pointwise Mutual Information (SPPMI). In SPPMI, PMI values are shifted uniformly by a constant, which is typically five. Although SPPMI is effective in practice, it lacks theoretical explanation, and has space for improvement. Intuitively, shifting is to remove co-occurrence pairs that could have co-occurred due to randomness, i.e., the pairs whose expected co-occurrence count is close to its observed appearances. We propose a new shifting scheme, called Dynamic Mutual Information (DMI), where the shifting is based on the variance of co-occurrences and Chebyshev's Inequality. Intuitively, DMI shifts more aggressively for rare word pairs. We demonstrate that DMI outperforms the state-of-the-art SPPMI in a variety of word similarity evaluation tasks.
Recommended Citation
Li, Yaxin, "Capturing Word Semantics From Co-occurrences Using Dynamic Mutual Information" (2019). Electronic Theses and Dissertations. 7644.
https://scholar.uwindsor.ca/etd/7644