Date of Award
3-10-2019
Publication Type
Doctoral Thesis
Degree Name
Ph.D.
Department
Chemistry and Biochemistry
Supervisor
Keith Taylor
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Along with other contaminants, heterocyclic aromatic compounds have found their way to our water sources in concentrations up to tens of µg/L. Contrary to their carbon counterparts, there is a gap of information regarding nitrogen, sulfur and oxygen heterocyclic aromatic contaminants. This information gap also extends to the feasibility of enzymatic treatment of such compounds. In this dissertation, a survey of various heterocyclic aromatic families has been conducted to explore the possibility of removing them from synthetic wastewater by the oxidative polymerization action of soybean peroxidase enzyme. The experiments were designed for ≥ 95% removal of the target compound as the most important parameters pH, enzyme activity, peroxide concentration and reaction time were optimized. In most cases, 85-90% removal efficiency was achieved under the studied conditions. In some cases, the cost of enzyme and peroxide used was considered in determining the optimal treatment conditions. Mass spectral (MS) analysis was conducted on the supernatant and precipitate of the reaction under optimal conditions for preliminary identification of reaction products. Plausible structures were assigned to related empirical formulae derived from MS analysis. Lastly, computational tools were applied to investigate the most favored polymerization positions on the substrates and were compared to structurally related non-substrates. Furthermore, using computational studies, ionization energies and standard reduction potentials of all substrates and some non-substrates were calculated and ranked to investigate a possible trend in SBP specificity based on these two factors.
Recommended Citation
Mashhadi, Neda, "Oxidative Polymerization of Heterocyclic Aromatics Using Soybean Peroxidase for Treatment of Wastewater" (2019). Electronic Theses and Dissertations. 7646.
https://scholar.uwindsor.ca/etd/7646