Date of Award
9-24-2019
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Supervisor
Yuan, X.
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
With the evolving technologies in the autonomous vehicle industry, now it has become possible for automobile passengers to sit relaxed instead of driving the car. Technologies like object detection, object identification, and image segmentation have enabled an autonomous car to identify and detect an object on the road in order to drive safely. While an autonomous car drives by itself on the road, the types of objects surrounding the car can be dynamic (e.g., cars and pedestrians), stationary (e.g., buildings and benches), and variable (e.g., trees) depending on if the location or shape of an object changes or not. Different from the existing image-based approaches to detect and recognize objects in the scene, in this research 3D virtual world is employed to verify and eliminate stationary and variable objects to allow the autonomous car to focus on dynamic objects that may cause danger to its driving. This methodology takes advantage of prior knowledge of stationary and variable objects presented in a virtual city and verifies their existence in a real-time scene by matching keypoints between the virtual and real objects. In case of a stationary or variable object that does not exist in the virtual world due to incomplete pre-existing information, this method uses machine learning for object detection. Verified objects are then removed from the real-time image with a combined algorithm using contour detection and class activation map (CAM), which helps to enhance the efficiency and accuracy when recognizing moving objects.
Recommended Citation
Patel, Foram Pravinkumar, "Using Prior Knowledge for Verification and Elimination of Stationary and Variable Objects in Real-time Images" (2019). Electronic Theses and Dissertations. 7831.
https://scholar.uwindsor.ca/etd/7831