Date of Award

2008

Publication Type

Master Thesis

Degree Name

M.A.Sc.

Department

Electrical and Computer Engineering

Keywords

Applied sciences

Supervisor

Esam Abdel-Raheem

Supervisor

Mohammed A. S. Khalid

Rights

info:eu-repo/semantics/openAccess

Abstract

Finite impulse response (FIR) filter is a fundamental component in digital signal processing. Two-channel perfect reconstruction (PR) QMF banks are widely used in many applications, such as image coding, speech processing and communications. A practical lattice realization of two-channel QMF bank is developed in this thesis for dealing with the wide dynamic range of intermediate results in lattice structure. To achieve low complexity and low power consumption of two-channel perfect reconstruction QMF bank, canonical signed digit (CSD) number system is used for representing lattice coefficients in FPGA implementation. Utilization of CSD number system in lattice structures leads to more efficient hardware implementation. Many fixed-point simulations were done in Matlab in order to obtain the proper fixed-point word-length for different signals. Finally, FPGA implementation results show that perfect reconstruction signal is obtained by using the proposed method. Furthermore, the power consumption using CSD number system for representing lattice coefficients is less than that obtained by using two's complement number system in two-channel QMF bank. A low complexity and low power two-channel PR QMF bank using CSD coefficients was realized.

Share

COinS