Date of Award
2010
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Applied sciences
Supervisor
Dan Wu
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
New challenges arise with multi-robotics, while information integration is among the most important problems need to be solved in this field. For mobile robots, information integration usually refers to map merging . Map merging is the process of combining partial maps constructed by individual robots in order to build a global map of the environment.
Different approaches have been made toward solving map merging problem. Our method is based on transformational approach, in which the idea is to find regions of overlap between local maps and fuse them together using a set of transformations and similarity heuristic algorithms. The contribution of this work is an improvement made in the search space of candidate transformations. This was achieved by enforcing pair-wise partial localization technique over the local maps prior to any attempt to transform them. The experimental results show a noticeable improvement (15-20%) made in the overall mapping time using our technique.
Recommended Citation
Soleimani, Ahmad, "Collective cluster-based map merging in multi robot SLAM" (2010). Electronic Theses and Dissertations. 7963.
https://scholar.uwindsor.ca/etd/7963