Date of Award
2010
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Electrical and Computer Engineering
Keywords
Applied sciences
Supervisor
Sazzadur Chowdhury
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
An FPGA implementable Verilog HDL based signal processing algorithm has been developed to detect the range and velocity of target vehicles using a MEMS based 77 GHz LFMCW long range automotive radar. The algorithm generates a tuning voltage to control a GaAs based VCO to produce a triangular chirp signal, controls the operation of MEMS components, and finally processes the IF signal to determine the range and veolicty of the detected targets. The Verilog HDL code has been developed targeting the Xilinx Virtex-5 SX50T FPGA. The developed algorithm enables the MEMS radar to detect 24 targets in an optimum timespan of 6.42 ms in the range of 0.4 to 200 m with a range resolution of 0.19 m and a maximum range error 0.25 m. A maximum relative velocity of ±300 km/h can be determined with a velocity resolution in HDL of 0.95 m/s and a maximum velocity error of 0.83 m/s with a sweep duration of 1 ms.
Recommended Citation
Lal, Sundeep, "An FPGA-based 77 GHzs RADAR signal processing system for automotive collision avoidance" (2010). Electronic Theses and Dissertations. 7979.
https://scholar.uwindsor.ca/etd/7979