Date of Award
2010
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Applied sciences
Supervisor
Derek. O. Northwood
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
In this study, aluminum oxide was deposited on a pure aluminum substrate to produce hard ceramic coatings using a Plasma Electrolytic Oxidation (PEO) process. The process utilized DC, unipolar pulsed DC in the frequency range (0.2 KHz - 20 KHz) and bipolar pulsed DC current modes. The effects of process parameters (i.e., electrolyte concentration, current density and treatment time) on the plasma discharge behavior during the PEO treatment were investigated using optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm - 900 nm). The emission spectra were recorded and plasma temperature profile versus processing time was constructed using the line intensity ratios method. Scanning Electron Microscopy (SEM) with energy dispersive x-ray analysis (EDS) was used to study the coating microstructure. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings. The main effect came from the strongest discharges which were initiated at the interface between the substrate and the coating. Through manipulation of process parameters to control or reduce the strongest discharge, the density and quality of the coating layers could be modified. This work demonstrated that by adjusting the ratio of the positive to negative pulse currents as well as their timing in order to eliminate the strongest discharges, the quality of the coatings was considerably improved.
Recommended Citation
Hussein, Riyad Omran, "Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings" (2010). Electronic Theses and Dissertations. 8027.
https://scholar.uwindsor.ca/etd/8027