Date of Award
2009
Publication Type
Master Thesis
Degree Name
M.Sc.
Department
Computer Science
Keywords
Applied sciences
Supervisor
Arunita Jaekel
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Wireless mobile communication is a fast growing field in current telecommunication industry. In a wireless cellular network, channel assignment is a mechanism that assigns channels to mobile users in order to establish a communication between a mobile terminal and a base station. It is important to determine an optimal allocation of channels that makes effective use of channels and minimizes call-blocking and call-dropping probabilities. Another important issue, the power control, is a problem of determining an optimal allocation of power levels to transmitters such that the power consumption is minimized while signal quality is maintained. In wireless mobile networks, channels and transmitter powers are limited resources. Therefore, efficient utilization of both those resources can significantly increase the capacity of network.
In this thesis, we solve such optimizations by the hybrid channel assignment (HCA) method using integer linear programming (ILP). Two novel sets of ILP formulation are proposed for two different cases: Reuse Distance based HCA without power control, and Carrier-to-Interference Ratio based HCA combined with power control. For each of them, our experimental results show an improvement over other several approaches.
Recommended Citation
Yu, Xin, "Optimal channel assignment and power control in wireless cellular networks" (2009). Electronic Theses and Dissertations. 8049.
https://scholar.uwindsor.ca/etd/8049