Date of Award
2008
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Industrial and Manufacturing Systems Engineering
Keywords
Applied sciences
Supervisor
Guoqing Zhang
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
This research proposes a variety of solution approaches to a class of stochastic supply chain problems, with normally distributed demand in a certain period of time in the future. These problems aim to provide the decisions regarding the production levels; supplier selection for raw materials; and optimal order quantity. The typical problem could be formulated as a mixed integer nonlinear program model, and the objective function for maximizing the expected profit is expressed in an integral format. In order to solve the problem, an open source solution package BONMIN is first employed to get the exact optimum result for small scale instances; then according to the specific feature of the problem a tailored nonlinear branch and bound framework is developed for larger scale problems through the introduction of triangular approximation approach and an iterative algorithm. Both open source solvers and commercial solvers are employed to solve the inner problem, and the results to larger scale problems demonstrate the competency of introduced approaches. In addition, two small heuristics are also introduced and the selected results are reported.
Recommended Citation
Chen, Sicheng, "Open source solution approaches to a class of stochastic supply chain problems" (2008). Electronic Theses and Dissertations. 8240.
https://scholar.uwindsor.ca/etd/8240