Date of Award
1-14-2020
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Electrical and Computer Engineering
Keywords
autonomous operation, extremum seeking control, LiDAR
Supervisor
Xiang Chen
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
LiDAR detection is susceptible to ambient interference. Therefore, it is important to maintain LiDAR detection performance when it operates autonomously in varying environments. In this paper, an optimization approach is proposed to automatically regulate LiDAR detection range through a model-guided extremum seeking control (ESC) against the variation of ambient conditions. A neural network model is trained with experimental LiDAR data off-line to simulate the impact of ambient conditions, and an Environmental Index (EI) is proposed to classify the ambient conditions. In order to obtain the optimal LiDAR detection range for each classified ambient condition, a designed cost function is used to obtain off-line solutions for each ambient condition. In order to deal with modelling uncertainties, an on-line optimization algorithm, ESC, is employed with initial conditions originating in the results of off-line optimization. The effectiveness of this model-guided ESC mechanism is then validated with experiments involving a real LiDAR on a mobile carrier.
Recommended Citation
Hua, Youying, "Automated Regulation of LiDAR Detection Range with Model-Guided Extremum Seeking Control" (2020). Electronic Theses and Dissertations. 8300.
https://scholar.uwindsor.ca/etd/8300