Date of Award

7-7-2020

Publication Type

Master Thesis

Degree Name

M.Sc.

Department

Biological Sciences

Keywords

Arctic, Climate change, Deep-sea, Food webs, Latitudinal gradient, Stable isotopes

Supervisor

Nigel Hussey

Supervisor

Kevin Hedges

Rights

info:eu-repo/semantics/embargoedAccess

Abstract

The deep-sea, defined as the area 200 m below the surface, is facing emerging chemical, physical and biological stressors. Currently, very little is known regarding deep-sea ecosystems both globally and in the Arctic. In this thesis I undertook a literature review on the current understanding of global deep-sea ecosystems through the use of stable isotopes. Specifically, I synthesized the available literature on spatial variation, energy pathways, depth, temporal variation, feeding behaviour, niche, trophic position and body size isotopic trends. This thesis then presents a case study examining the isotopic niche of five teleost and two decapod species within Arctic deep-sea food webs across the localized latitudinal gradient of Baffin Island. Spatial variation in isotopic niche was quantified using 13C and 15N for seven deep-sea species at three locations on Baffin Island, Nunavut to determine whether the “Latitudinal Niche Breadth Hypothesis” which states that niche breadth should increase with latitude holds true in the Arctic. Overall, isotopic patterns in global deep-sea ecosystem are variable; consistent trends are not observed across all taxa and habitats. It was concluded that niche breadth did not consistently increase with latitude in the eastern Canadian Arctic; localized conditions (e.g. sea ice, temperature) and individual condition (e.g. hepatosomatic index) may contribute more to a species’ niche than latitude. Overall, this thesis improves our understanding of deep-sea ecosystems globally, contributes baseline data for future monitoring, and by investigating multiple species and locations it will provide input on how climate change may impact Arctic food web diversity, energy dynamics and ecosystem structure to aid in sustainable fishery development.

Share

COinS