Date of Award
11-5-2020
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Electrical and Computer Engineering
Supervisor
Maher Azzouz
Rights
info:eu-repo/semantics/embargoedAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Inverter-interfaced distributed generators (IIDGs) generate fault currents that are different from those generated by conventional synchronous generators (SGs). As a result, commercial relays—that utilize current-angle-based phase selection measurements—misidentify faulty phase(s), which adversely impact the grid resiliency and reliability. In this thesis, a new control scheme is proposed to regulate the sequence components of the IIDG currents during unbalanced faults to ensure accurate fault type classification by commercial relays. The proposed controller controls the positive-sequence and negative-sequence currents in the dq-frame with a decoupled synchronous reference frame (DDSRF) based phase-locked loop (PLL) for components extraction and synchronization. It also uses a second order generalized integrator (SOGI) based PLL to synchronize the zero-sequence components. This scheme forces the angles of the negative-sequence and zero-sequence fault IIDG currents to behave like those of an SG while preserving the inverter’s current limits. This leads to proper fault type classification. The proposed control scheme pertains to three-wire IIDGs as well as four-wire IIDGs, which are common in low-voltage distribution networks. A performance evaluation using time-domain simulations is used on a benchmark network to confirm the success of the proposed control scheme under different fault conditions.
Recommended Citation
Radwan, Wael, "Control of Four-Wire Inverter-Interfaced DGs for Accurate Fault Type Classification" (2020). Electronic Theses and Dissertations. 8506.
https://scholar.uwindsor.ca/etd/8506