Date of Award
3-10-2021
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Electrical and Computer Engineering
Keywords
Imputation, Missing tolerance, V2X communication
Supervisor
Roozbeh R.R. Razavi-Far
Supervisor
Mehrdad M.S. Saif
Rights
info:eu-repo/semantics/openAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Misbehavior detection is a critical task in vehicular ad hoc networks. However, state-of-the-art data-driven techniques for misbehavior detection are usually conducted through complete V2X communication data collected from simulated experiments. This thesis evaluates the main strategies for the treatment of missing values to find out the best match for misbehavior detection with incomplete V2X communication data. This thesis proposes three novel methods for imputing and tolerating missing data. The first two are novel imputation methods that are based on cooperative clustering and collaborative clustering. The latter is a missing-tolerant method that is an ensemble learning based on the random subspace selection and Dempster-Shafer fusion. The effectiveness of the proposed techniques is evaluated in the ground truth vehicular reference misbehavior data. Moreover, a multi-factor amputation framework has been developed to induce missingness over V2X communication data with different missing ratios, mechanisms, and distributions. This framework provides a comprehensive benchmark resembling missingness over V2X communication data. The proposed methods are compared with some missing-tolerant and imputation methods. The attained results over benchmark data are analyzed and indicated the winner treatments in each aspect.
Recommended Citation
Wan, Daoming, "To Tolerate or To Impute Missing Values in V2X Communications Data?" (2021). Electronic Theses and Dissertations. 8580.
https://scholar.uwindsor.ca/etd/8580