Date of Award
6-18-2021
Publication Type
Master Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Coating, Condensing heat exchanger, Fluoropolymer, Graphite, Polymer composite, Thermal conductivity
Supervisor
Afsaneh Edrisy
Supervisor
Youliang He
Rights
info:eu-repo/semantics/embargoedAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Abstract
Polymer coatings exhibit superior corrosion resistance, making them a good solution to protect heat exchange components from chemical attack in low temperature heat recovery. Nonetheless, major shortcomings to using polymer coatings include their low thermal conductivity, low strength, and susceptibility to wear. Studies conducted collaboratively by the University of Windsor and CanmetMATERIALS have investigated the suitability of perfluoroalkoxy (PFA) composite coatings with conductive filler materials, such as graphene, for polymer composite coatings. The following research investigates the impact of two different filler incorporation techniques, ball milling and magnetic functionalization, to optimize the microstructural, thermal, and tribological properties of the polymer composite coating. Through microscopy, the investigation revealed that the ball milled samples display excellent filler particle distribution, and a general lateral alignment of graphite filler particles. The composites displayed a decrease in the thermal conductivity after ball milling, resulted from the lateral alignment of filler particles and measurement of the thermal properties in the out-of-plane direction. Furthermore, Raman analysis indicated that the ball milling process did not produce monolayer graphene. The magnetically functionalized multi-layer graphene (MF-MLG) particles were responsive to an external magnet however, microscopy showed that the MF-MLG were not aligned within the polymer matrix. A combination of abrasive and adhesive wear was observed through pin-on-disk wear testing; higher weight fractions of filler resulted in lower wear resistance. All composites displayed very low coefficient of friction values throughout testing.
Recommended Citation
McPhedran, Joselyne, "Development of Polymer Composite Coatings for Condensing Heat Exchangers" (2021). Electronic Theses and Dissertations. 8606.
https://scholar.uwindsor.ca/etd/8606