Date of Award
10-1-2021
Publication Type
Thesis
Degree Name
M.A.Sc.
Department
Mechanical, Automotive, and Materials Engineering
Keywords
Gas turbines, Monte carlo, Partially stirred reactor network, PaSR Network, Reactor network, SRM network
Supervisor
N.Eaves
Supervisor
M. Zheng
Rights
info:eu-repo/semantics/openAccess
Abstract
Due to their negative health implications, the reduction of emissions from combustion processes is imperative. In order to reduce emissions, predicting and understanding their thermo-chemical formation in different types of combustion systems are necessary. Modern combustion systems, such as internal combustion engines and gas turbine engines, require innovative numerical methodologies that aid in the understanding of underlying chemical kinetics and mixing time-scales, all while being computationally inexpensive. However, current inclusive methodologies for predicting emissions and ignition events rely on computationally expensive computational fluid dynamics. The main objective of this thesis is to present a newly developed stochastic reactor model network that employs detailed physics to explain thermo-chemical phenomena in continuously flowing devices. The numerical methodology behind the model is explored and the SRM network is compared to existing 0-D perfectly stirred reactor network model. The results of the SRM network match the PSR network within 0.1% error. Finally, the ability of stochastic reactor model networks to predict rare events is examined. It is seen that at an epsilon of 0.1 the model predicts rare events.
Recommended Citation
Gupta, Nupur, "Development of a Stochastic Reactor Model Network Towards Combustion Systems" (2021). Electronic Theses and Dissertations. 8748.
https://scholar.uwindsor.ca/etd/8748