Date of Award
1-10-2024
Publication Type
Dissertation
Degree Name
Ph.D.
Department
Electrical and Computer Engineering
Keywords
Elliptic Curve Cryptography;Field Programmable Gate Array;Finite Field Arithmetic;Hardware Security;Polynomial Multiplication
Supervisor
Mitra Mirhassani
Supervisor
Mohammed Khalid
Rights
info:eu-repo/semantics/embargoedAccess
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Encryption and decryption have been integrated into all communication devices, and Elliptic Curve Cryptography (ECC) has been widely used as a prominent protocol in data security. In ECC, polynomial multiplication has been considered the most time and area-consuming operation, which impacts the overall system’s efficiency. Multiplication algorithms with sub-quadratic computational complexity are widely used to reduce area requirements and improve the delay of ECC cryptographic hardware. This thesis presents new and improved designs for multipliers used in ECC. Firstly, composite multipliers were designed using the M-term Karatsuba and school-book multiplication algorithms. These implementations include a pioneering and novel adaptation of the theoretical model of the M-term Karatsuba multiplication algorithm into a hardware implementation. Secondly, novel binary polynomial multipliers have been proposed using M-term overlap-free Karatsuba multiplication (OFKM), where M is 5–8. For further optimization, these hardware designs also use a hybrid approach that combines M-term overlap-free Karatsuba multipliers with two-term splitting to reduce the need for zero-padding in the final recurrent stages. In all the experimental evaluations, reported device utilization and latency indicated that the proposed multipliers are roughly 26% faster and 15% more efficient in terms of the Area–Delay Product (ADP) compared to the existing designs. Finally, based on the Binary method (left to right), an elliptic curve scalar point multiplication processor was presented using a novel adaptation of the proposed multipliers targeting lightweight and high-speed applications. This processor was designed for two National Institute of Standards and Technology (NIST) recommended binary fields such as Federal Information Processing Standards (FIPS-186) B-163 and B-233. The implemented processor presents a reasonable trade-off between speed and area consumption, and the design compares favourably with previous designs in terms of ADP.
Recommended Citation
Thirumoorthi, Madhan, "Hardware Design and Implementation of Polynomial Multipliers for Finite Field Arithmetic" (2024). Electronic Theses and Dissertations. 9196.
https://scholar.uwindsor.ca/etd/9196